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Abstract 

V 

An approach to spectral estimation is described which 
involves the simultaneous use of frequency, time, and 
quantile domain algorithms, and is called quantile spectral 
ajialysis.  It is based on the premise that while the spectfrum 
is a non-parametric concept, its estimation cannot be a 
non-parametric procedure to be conducted independently of 
model identification.  We discuss: the goals of spectral 
analysis, quantile data analysis, identification of memory 
(no, short, long), index of regular variation of a spectral 
density, autoregressive spectral estimation, and ARMA model 
identification by estimating MA(«) and subset regression. 
An illustrative example is given of quantile spectral 
analysis. 
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1.   Introduction to a theory of spectral synthesis 

Statistical Spectral Analysis appears to be a subject of 

considerable controversy as to how to do it and whether to do 

it.  In many fields of engineering and physical sciences, its 

importance for applications is well recognized.  In other fields 

(notably economics) its value is still debated.  One reason for 

this may be the difficulty of analysis of time series with trends 

or very slowly decaying correlations or very low frequency cycles 

or spectral densities with very large dynamic range.  A single 

name for such time series is "long memory" time series. 

This paper describes an approach to time series analysis 

which attempts to use simultaneously diverse domains of analysis, 

and thus to meet the needs of all the possible fields of 

application of time series analysis.  It also aims to integrate 

spectral and correlation methods with methods for long memory 

and/or long tailed time series. 

The correlation function and spectrum are basic non-parametric 

(or functional) parameters used to model and data analyze time 

series.  Estimation of the correlation function and of the 

spectrum represent two of the basic tools used for descriptive 

data summaries of observations and to guess parametric 

probability models to fit to observations.  The spectrum is 

important also as a major concept in terms of which to analyze 

the effect of passing random processes (representing either 

signal or noise) through linear (and, to some extent, non-linear) 

systems. 

L _ •ü - -ii.i i  ... 
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Correlation and spectrum are examples of non-parametric 

signatures of parametric models.  We believe that such signatures 

provide key (and two-key) methods for achieving the goals of 

time series analysis (and statistical data analysis).  The goals 

are to find:  "Theories to fit (attest) the (statistical) facts" 

and "statistical facts to fit (test) theories."  By fitting 

theories to facts one means either statistical models (to 

describe the statistical behavior of the data) or scientific 

models (to explain the statistical models fitted by the data). 

By statistical facts to test theories one means the estimation 

of characteristics of non-parametric statistical models 

(significant time lags, significant frequencies, and memory); 

such parameters (estimated non-parametrically) represent 

descriptions of a real process which an acceptable (or 

parametric model) must explain.  The goals of time series 

analysis can be stated simply: seek models which fit curves (or 

fit samples), where fit is measured by the degree of scientific 

insight provided into underlying physical mechanisms. 

The approach to spectral estimation described in this paper 

involves the simultaneous use of diverse algorithms for time 

series analysis (it could be called spectral synthesis).  Our 

approach is based on a premise that might appear paradoxical: 

while the spectrum is a non-parametric concept, its estimation 

cannot be a non-parametric procedure to be conducted 

independently of model identification. 

...  ,.—!_••• .... . . —. —    ~—> .    
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To form a spectral estimator one must identify the memory 

type of the time series, which we classify into one of 3 

types: 

a. No memory or white noise, 

b. Short memory or stationary with finite spectral 

dynamic range, 

c. Long memory. 

A short memory time series is modeled parametrically by 

the invertible filters which transforms it to white noise 

whose type (AR, MA, or ARMA) one must identify. 

A long memory time series is modeled parametrically by 

an operator which transforms it to a short memory time series; 

such operators are non-invertible filters or representations as 

the sum of a long-memory signal and a short memory noise. 

The goal of the time series analyst is often defined to be 

either a time domain model or a spectral analysis.  Our approach 

maintains that the two domains must be employed simultaneously 

because the choice of final answer must be based on having a 

satisfactory interpretation in both domains.  Additional domains 

(involving memory, information, and quantiles) are utilized in 

our approach to time series model identification, especially 

new diagnostic measures (or model signatures), based on 

"quantile data analysis" of spectral density and correlation 

functions.  These new model signatures represent an application 

to time series analysis of new time-series theoretic methods of 

 i  
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statistical data analysis of probability distributions which 

we call Quantile Data Analysis and Functional Statistical 

Inference (abbreviated FUN.STAT). 

The FUN.STAT approach to statistical data analysis is 

based on isomorphisms between properties of spectral density 

functions and density-quantile functions.  One of the rewards 

of this isomorphism is an important diagnostic of time series 

memory called the index 5 of regular variation of a spectral 

density at frequency u. 

• - - •MMN 



2.   How to define the spectrum 

As the goal of the theory of spectral analysis, we propose 

that we adopt the goal stated by Wiener (1930) in his celebrated 

pioneering paper which introduced generalized harmonic analysis. 

Wiener defined the goal of spectral analysis to be:  to improve, 

and make rigorous, Schuster's concept of the periodogram of a 

sample.  We consider only discrete parameter time series Y(t), 

t=0, +1, ....  A sample is the finite (but increasing) number 

of observations Y(t), t=l,2,...,T. 

To detect the "hidden periodicity" to  in the model 

(1)     Y(t) = A cos u)Qt + B sin coQt + N(t) , 

where N(t) is white noise [a sequence of independent 

identically distributed random variables with finite second 

(and possibly higher) moments], Schuster (1898) proposed 

calculating the function S„(üJ) , -0. 5<UJ<0. 5 [we take 0<w<l] , 

defined by 

(2) S_,(co) = ;jr I     Y(t) exp (-27Titoj) 
t=l 

which we call the sample unnormalized spectral density or 

periodogram or sample power spectrum. 

When the time series obeys the model (1), one can show that 

S-(u) tends to °° as T tends to °°.  Therefore one might interpret 



local maxima of ST(u>) as indicating "significant frequencies" 

representing "hidden periodicities." However the graph of 

S_(üJ) is often a very wiggly function, and one obtains many 

bumps in the spectrum representing "spurious periodicities." 

A traditional approach in statistical communication 

engineering textbooks to defining the spectrum S(co) of a time 

series Y(t), t=0, +1,... has been 

(3)    S(w) = lim ST(uO 
T+co    l 

Unfortunately for those who would like the world to be 

simple [but fortunately for those who enjoy the deeper beauty 

of a more complicated reality and the accompanying theory] the 

limit of ST(w) does not exist in any usual mode of convergence. 

The story of spectral analysis starts with the study of the 

limiting behavior of ST(a>) , -0.5<u)<0.5, especially how to use 

it to define statistically significant signatures of time series 

samples.  To solve the problem of interpreting ST(u)) , Wiener 

(1930) proposed a "radical recasting" based on the Fourier 

representations 

(4) 

ST(ü)) - I       exp (-27rivw) lUCv) , 
1     v=-T x 

0.5 
R~(v) =  /   exp (2nivu)) S^Cw) dw 

1      -0.5 l 

-> _  Mat.   _^ 
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where R^Cv) is the sample covariance function 

Mv) = £  I   Y(t+v) Y(t)   ,  v-0,1 T-l 
i      i t=i 

(5) 
= 0 ,  v^T, 

= f^C-v), ,  v<0 

The sample correlation function is defined by 

(6) pT(v) = R^v) v 1^(0) 

Wiener's theory of generalized harmonic analysis is based 

on assuming the existence of the limit 

(7) p(v) = lim pT(v) 
T*oo 

One calls p(v) the (asymptotic) correlation function. 

One can show that p(v) is a function of non-negative type: 

for any set of complex numbers c,,..., c  and integers v,,..., v ' in        " i     n 

n 
(8) I     c±c  * p(vi-v ) > 

i,j = l   J       J 

where C*J denotes the complex conjugate of c..  Consequently, 

there exists a bounded non-decreasing function of a real variable 

a), denoted F(w), and called the spectral distribution function, 
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such that 

0.5  9 . 
(9)    p(v) = /    e^^dF^),  v=0, +1  

-0.5 

The spectral density function f(co) is defined as the derivative 

of the absolutely continuous part of F(u>) .  If F(u>) is itself 

absolutely continuous, then 

p(v) = /  e    f(üj) dm 

(10)    f(w) = I     e"2lTi•p(v) 
v=-°° 

A sufficient condition for the spectral density f(w) to exist is 

that the correlation function p(v) tend to 0 (as v-*°°) 

sufficiently fast that 

(11)     I      |P(V)|     or I        |p(v)|2 < » 
V= - oo V= — °° 

A probability model under which the asymptotic correlation 

function p(v) may be proved to exist is the following: 

Y(t), t=0, +1, ... is a zero mean covariance stationary time 

series with covariance function 

(12)    R(v) = E[Y(t+v) Y(t)] 

• - -^ 

tfMfe>_    — -—»^--      - ———-»- 
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and correlation function p(v) = R(v) • R(0).  When the time 

series is Gaussian, a necessary and sufficient condition for 

PT(v) to converge (almost surely) to p(v) is that 

(13)    lim I    l     p2(v) =0. 
T^-oo    v=l 

This is another example of a condition on p(v) which reflects 

the rate of decay to zero of p(v). 

A necessary and sufficient condition for a zero mean Gaussian 

covariance stationary time series to be white noise is that 

p(v) = 0 for v f  0.  It is natural to conclude that one can 

distinguish three types of time series: 

no memo ry 
i  i 
tk     I   p2(v) = 0  for all T T v=l 

short memory \    [ p2(v) + 0  as T 
v=l 

long memory i   I P2(V) ^ o 
1 v=l 

One can argue that:  (1) an optimal non-parametric 

estimator p(v) of p(v) is given by p(v) = pT(v); and  (2) one 

can base a test of the hypothesis H of white noise on a 

suitable number of sample correlations p(v), v=l,2,...,n.  Under 

HQ( the asymptotic distribution of pT(v) is independent Gaussian 

random variables with zero means and variance T  .  To  test H 

1.1 
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one can test whether p(v), v-l,...,n, satisfy the hypothesis 

that they are a random sample from a normal distribution with 

mean 0 and variance 1/T.  This is the kind of hypothesis for 

which FUN.STAT provides tools. 

A quick and dirty diagnostic of time series memory type 

is provided by the value of the correlations mean square 

CORRMS = i I     p2(v) 
n v=l 

Computation of CORRMS for samples of size 200 indicate that very 

approximately 0.004 _< CORRMS £ 0.1 indicates short memory (then 

CORRMS < 0.004, no memory; CORRMS > .1, long memory). 

The sample spectral density 

T 
f(u) =  T   exp (-2iTivü)) p(v) 

v=-T 

is computed by first computing the sample Fourier transform 

T 
IJI(M) = I     Y(t) exp (-2Tiiu)t) 

t=l 

at an equi-spaced grid of frequencies in 0<UJ<1 of the form 

a) = k/S, k=0,l,...,S - 1.  We call S the spectral computation 

number; one should choose S > T + M, where M is the maximum 

lag at which one computes sample correlations p(v). 

The sample spectral density f(w), 0<w<l, is computed at 

u) = k/S by squaring and normalizing the sample Fourier transform: 

d—fcfci       i^—• —*  .•„.,. I..* 
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f(u.) - |i(a))|2 4 | Sf |i(|)|2 
k=0   b 

When a time series is no memory (or white noise), and has 

finite second moments, it is a basic theorem of time series 

analysis that asymptotically the random variables f(k/S), k=l,..., 

[S/2], are identically distributed as an exponential distribution 

with mean 1.  Therefore tests for white noise can be obtained by 

quantile data analysis based tests for exponentiality of the 

sample spectral density f(co) at suitable frequencies (if the 

informative quantile function of the original data does not 

indicate a long tailed distribution). 

Powerful discriminators of memory type are SPECMED (the 

median) and SPECVAR (the variance) of the data batch of values 

of the sample spectral density.  For no memory these are the 

median and variance of an exponential distribution with mean 1: 

SPECMED = log 2 = .69,    SPECVAR = 1. 

Computation of these signatures for samples of size 200 indicate 

that short memory corresponds very approximately to 

.1 < SPECMED < .6, 1.5 < SPECVAR < 20 

Deeper diagnostics of time series memory are provided by 

quantile data analysis of f(to), especially plots of informative 

quantile function IQ(u) and comparison distribution functions 

D(u). 

• k - •••-       mi •• ii ~JI^M^II i    ,rf«^^y—dMtoh»——.^.MfcMjiHttt—•**• 
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The insights into model identification provided by the 

notion of memory are captured not by definitions in terms of 

correlations (or even partial correlations) but by definitions 

in terms of the dynamic range of the spectral density function 

and sample spectral density, defined 

SPECRNG = {max log f(w) - min log f (ID) } 
0) ÜJ 

Dynamic range classification of memory of a time series 

no memory    = dynamic range = 0  , 

short memory =     0 < dynamic range < °°  , 

long memory   2  dynamic range = °° 

When the dynamic range is finite, we can assume that the 

spectral density f(oj) is bounded above and below: for some 

constants c-, and C2> 0<Cn<f(u)<c.2<co  for all w. 

The operations which transform a long memory time series 

to a short memory one (or which represent a long memory time 

series in terms of a short memory one) can be considered a 

parametric time domain model.  Nonparametric descriptions of 

long memory properties can be defined in terms of the index of 

regular variation of the spectral density at a specified 

frequency, usually zero frequency.  As UJ-*-0, the spectral density 

f(ii>) is assumed to be a regularly varying function, with the 

representation 
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— ä 
f(u)) = to  L(ü)) 

where L(w) is a slowly varying function.  The value of 6 is an 

index of length of memory, since 

No and short memory   =  6=0 

Long memory =6^0 

Long memory time series models have spectral density f(oo) 

satisfying the regular variation representation.  The index 

6<0 (6>0) corresponds to a zero (infinite) value for f(ii)) at 

w=0. 

Determining the degree of differencing:  When a time series 

Y(t) can be transformed to a stationary time series Z(t) by 

differencing d times, one can think of the "spectral density" 

fY(w) of Y(*) as having the representation 

fY(u)) = |l-e    |    fz(u) 

which is a special case of assuming that fyC^) is regularly 

varying at to=0 with index 6=2d.  Estimators for 6  can provide 

techniques for estimating d. 

Self-similarity:  When a spectral density f(to) is regularly 

varying at GJ=0 it enjoys a property called approximate self- 

similarity: f(yw) = y~  f(oo) in the sense that, for any y>0, 

f(yu>) * y  f(w) + l as u) + o. 

* 

- 
-•- 



14 
i 

3.  Quantile Data Analysis 

The probability distribution of a random variable X has 

been traditionally described by its distribution function 

F(x) = Pr[X<x] and its probability density function f(x) = F'(x) 

Given a sample X,,...,X of X, the models that we seek to fit i     n 

to the data are usually parametric models of the form 

F(x) - F (*^) v '   oN o 

for parameters y and o (representing location and scale 

respectively) to be estimated, and F (x) a known distribution 
o 

function.  The most important cases of F (x) are: 

normal Fo(x) = *<X) = /  *<y) dy 

• (y) • (2TT)-
1/2

 exp - \  y 1 „2 

exponential   F0(
x) •* 1 - •    , x > 0 

The quantile function Q(u), 0<u<l, defined by 

Q(u) = F_1(u) = inf {x: F(x) >  u} 

can be regarded as inverse of the distribution function.  When 

F(x) is continuous, FQ(u) • u.  Quantile data analysis estimates 

. 
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non-parametrically Q(u); the quantile-density function 

q(u) = Q'(u); and the density-quantile function 

fQ(u) = f(F_1(u) = {q(u)}*1 

The tail behavior of a distribution can be described by 

indices ex and a, in the following representations of the 

density-quantile function as a regularly varying function: 

fQ(u) = u ° L0(u), fQ(u) = (l-u/1 Lx(u) 

where L.(u) is a slowly varying function as u+j. 

The definition of a function L(u) slowly varying at u=0 

is: for every y, in 0<y<l, 

log L(yu) - log L(u) •» 0   as   u •*•  0 

We assume in addition that 

lim  fl ^m /* {log L(yu) - log u} dy = 0 

Then one can compute a by 

-ao= iio i)> {log fQ(yu) * log fQ(u)} dy 

MHMMMlHMB __— <tmi*w*M    •       



T ""•"• 

16 

We digress to note that for a spectral density function 

f(üj), 0<o><l one assumes a representation (at w=0) 

f(u) • w  L(üj) 

We call 6 the index of regular variation at frequency u>=0. 

It is computed by 

6 = iio 'i {1°s f(yw> - los f<^} dy 

Estimation of the density-quantile function fQ(u) can be 

treated by similar procedures as are used to estimate spectral 

densities f((i)).  However much insight into the distributions 

that might fit a sample can be obtained by non-parametrically 

estimating the quantile function and the amazingly useful 

informative quantile function 

IQ(u) = 
Q(u) -M1 

where y, and o, are universal estimators of location and scale 

respectively.  We propose p, = 0(0.5), a, = Q'(0.5) = q(0.5). 

The IQ function is plotted with a vertical scale from -1 

to 1; its values are truncated when they exceed +1.  For ease 

of interpretation of the IQ function, we also plot the IQ 

function of the uniform distribution which is a straight line 

••- ,-_ - ~.. 
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passing through (0, -.5) and (1, .5).  A plot of IQ(u) is 

accompanied by its values at u = 0.01, 0.05, 0.10, 0.25, 0.75, 

0.90, 0.95, 0.99. 

Natural quick and dirty estimators of o, are 

op = {Q(0.5 + p) - Q(0.5 - p)} r  2p 

where 0<p<0.5; our preferred estimator is o« «,- which equals 

twice the interquartile range: 

°.25 = 2 W°-75> " Q<0-25)} 

To estimate these non-parametric parameters from a sample 

of size n, we form a sample quantile function Q(u) by linear 

interpolation of the values 

Q<nir> " x
jn j = i.. ,n 

where X, <...<X  are the order statistics of the sanrale. in—  — nn 

when the sample mean Y is large, it is necessary to trans- 

form Y(t) to Y(t) - Y; otherwise one would always obtain a 

diagnostic that Y(«) is a long memory time series.  An alternative 

first step in time series analysis is to replace Y(t) by 

{Y(t) - Q(0.5)} v 2{Q(0.75) - Q(0.25)} 

.»••" - 

•' • 
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One can test (before parameter estimation) the goodness of 

)f a sample to F(: 

the weighted spacings 

fit of a sample to F(x) = F (*^H) for some y and o by introducing 

d(u) = i- fnQrt(u) q(u) o^o 

where:  f Q (u) = f_(F  (u)) is the density-quantile function 

of the specified distribution; q(u) = Q'(u) is the sample 

quantile density function (expressible in terms of spacings, 

or differences of successive order statistics); and 

°~ = /„ f„Q~(u) qOO du o   ' o  o o    * 

The test function is 

D(u) = /J d(t) dt,    0<u<l, 

which one compares with the uniform distribution D(u) = u, 

0<ii<l.  We call D(u) the sample comparison distribution function, 

or the cumulative weighted spacings function [Parzen (1979)]. 

The data batch f(j), k=0, 1.....S/2, is tested for 

exponentiality by forming its informative quantile function IQ(u) 

and its cumulative weighted spacings function D(u), with 

f Q (u) = 1-u.  How one interprets the quantile data analysis of 

the sample spectral density is best illustrated by examples. 

 - .  • 



19 

4.  Autoregressive spectral estimation 

The concept of an autoregressive representation of a time 

series can be defined from several points of view.  When one's 

goal is spectral estimation based on improving Schuster's 

definition of the spectrum, it seems natural to adopt the 

viewpoint of a deconvolution filter representation: 

an(j) Y(t-j) = e(t)  ,  t=0, +1, 
j=0 P 

One seeks to choose the order p and coefficients a (j) so that 

the time series e(t) is parsimoniously white noise (just barely 

passes tests for white noise).  From the deconvolution filter 

representation of Y(t) one obtains approximately the following 

formula for sample spectral density functions: 

fY(w) a (j) exp (2TTiuo) 
j=0 p 

2 = °;   K  (w> 

where 

. 2 _ I    e».(t) * I    Y2(t) 
t=l t=l 

It is important to note that a near zero value of o2 is      p 

regarded as evidence that memory type is long. 

When fE(w) behaves as the sample spectral density of white 

noise, we can estimate it by the constant 1.  As potential 

. _ . __  - ^ — 
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estimates of the spectral density fY(w) of the time series Y(t) 

we consider the sequence of autoregressive spectral estimators 

f (u>) = a - „2 
! 

j-0 
ap(j) exp (2Trio)j) 

for p=0,l,2,... with coefficients a (j) computed by suitable 

algorithms.  The sequence f (u>) , p=0,l,2,..., should be 

regarded as a sequence of functions which smooth the sample 

spectral density.  They become increasingly wiggly as p tends 

to T, and eventually coincide with fY(u). 

To estimate the autoregressive coefficients a (j), 

p=l,2,... and j=l,2 p, two main methods are available of 

which important representatives are algorithms called 

1. Yule-Walker (stationary) 

2. Burg (non-stationary) 

The optimality properties of the methods depends on the 

memory type of the time series.  Theoretical and empirical 

evidence indicate that Yule-Walker and Burg estimators agree 

for short memory time series (which can be shown to be always 

representable as an invertible infinite autoregression).  For 

long memory time series which one assumes to possess an 

autoregressive rppresentation, Yule-Walker and Burg estimators 

usually differ significantly; further Burg (and least squares) 

estimators are consistent estimators while Yule-Walker are not, 

We propose the following practical consequences of these 

facts: given a time series sample, compute autoregressive 

— - 
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coefficients by both Yule-Walker and Burg estimators (for 

orders p to be determined from the data as described below). 

Check whether the two ways of estimation yield similar results. 

A yes answer is evidence that the memory type is short, or if 

memory is long that an autoregressive model may fit.  If 

memory is short, identify an ARMA scheme by the procedures of 

the next section.  A no answer is evidence that the memory type 

is long; using the diverse signatures introduced, one should 

determine operations which just barely transform the long 

memory time series to a short memory one (especially a model as 

a sum of long memory signal plus short memory noise). 

Solutions to the important problem of determining the 

order of approximating autoregressive schemes can be approached 

using order determing criterion functions, especially AIC (due 

to Akaike) and CAT (due to Parzen), which are formed from the 

sequence a2,   p=l,2   We recommend that one determine two 

orders (called best and second best) rather than a single order. 

The best (second best) order is that at which the criterion 

function achieves its minimum (second lowest relative minimum). 

The maximum of these orders (denoted p) is used as the order for 

least squares (or Burg) estimation of autoregressive coefficients 

An order determining criterion should be used only to suggest 

autoregressive orders p for which f  (co) is a satisfactory 

spectral estimator.  The ultimate criterion of goodness of fit 

of an autoregressive spectral estimator is that 

— — 
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dp(ü)) = fY(u)) T f (w) 

just barely satisfies the hypothesis that it is the sample 

spectral density of white noise.  The notation d(io) is chosen 

to convey that this function has properties similar to that 

of d(u) introduced in the preceding section for testing 

goodness of fit of probability distributions. 

While autoregressive spectral estimation can be performed 

for long memory time series obeying an autoregressive scheme 

with roots on or very near the unit circle, it seems to me 

that the process of model identification of observed real 

time series has greatest scientific insight if it is carried 

out in two stages in which one first finds an autoregressive 

operator (with a simple interpretation) which just barely 

transforms the time series to short memory, which in turn is 

modeled by an ARMA whitening filter. 

- 
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5.   ARMA Model Identification by Estimating MA(«) and Subset 

Regression 

A variety of approaches have been proposed by statisticians 

for identifying the orders p and q and estimating the coefficients 

of an ARMA (p,q) model for an observed time series.  An approach 

that we use (because of its very low computational cost) 

for an initial identification is based on first estimating the 

coefficients of the MA(°°) representation: 

Y(t) = e(t) + bn(l) e(t-l) + ... 

with residual variance 

a* = E[e2(t)] * E[Y2(t)] 

One approach to estimating MA(°°) is to estimate the AR(») 

representation by an approximating AR(p) representation (we 

usually use the Burg algorithm to compute its coefficients). 

Then one solves recursively for b (j) by 

ap(0) bco(k) + ap(l) bco(k-l) + ...+ap(k) b.(0) - 0, k-l,2,... 

A second approach to estimating MA(») is to compute the 

cepstral pseudo-correlations 

<Kv) • / exp (2TTiwv) log f(w) dw   .  v-0,+1  

-—    ——** ._-— --• • 
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One computes iKv) by replacing f(w) by a windowed spectral 

density estimator 

f(») - I      exp (-27rivu)) k(X) p(v) 
v--T n 

for a suitable kernel k(x) and truncation point M (satisfying 

T/2 < M < T). 

From i^(v) one can compute b (n) by the recursive formula 

(n+1) b (n+1) - I     (k+lH(k+l) b (n-k) 
k-0 

The spectral formula for residual variance a' 

lo8 °» = In  lo8 f<u> dw " *<0) oo    ' o 

yields an estimator a*  when one replaces f(w) by f (w) 

In the population a key relation is 

o2 {1 + b (1) + b (2)+.. .} = 1 

An alternative estimator of o2 is therefore 

Ö* = {1 + b*(l) + b>(2)+...} -1 

A useful signature of the memory and ARMA types of a time series 

* 
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is the prediction variance horizon function 

PVH(h) = o* {1 + b£(l)+...+b£(h-l)} . h-1,2,... . 

It can be interpreted as representing the mean square error of 

prediction h steps ahead.  The horizon of a time series is 

defined to be smallest value of h for which PVH(h) is greater 

than a suitable value (such as 0.95). 

From the MA(°°) representation one forms an estimator 

P(v) = Öl   {b (v) + bCl) b(v+l)+...} 

of p(v), and an estimator o^ b^Ck) of the covariance between 

Y(t) and e(t-k); we assume Y(t) has been normalized to have 

variance 1. 

Next one forms the joint covariance matrix of Y(t), 

Y(t-l),...,Y(t-m), e(t-l) ,..., e(t-m) for a suitable lag m. 

Finally, a subset regression routine is used to determine an 

ARMA model 

ap(0) Y(t) + ap(l) Y(t-1)+...+ap(p) Y(t-p) 

= b(0) e(t) + bq(l) e(t-l)+...+bq(q) e(t-q) 

with as many zero coefficients as possible [note:  a (0) = 

b (0) = 1].  These models, called subset regression ARMA models, 

mm 
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yield ARMA spectral estimates 

|h<e2^>|2 

fp.q(u0 = °P.q ,- ,-2i>luu,2 
*P 

e   ) 

where 

gp(z) = ap(0) + ap(l)z+...+ap(p) zp, 

h (») = bq(0( + bq(l)z+...+bq(q) z* 

For a monthly economic time series, with short memory, one 

often finds  p=2, q=12, with b,2(12) the only non-zero moving 

average coefficient.  The transfer function g2(z) models the low 

frequency component, and h,2(
z) models the seasonal component. 

We use the notation ARMA(1,2;12) for this model.  We use 

AR(1,12,13) for a subset ARMA model with p=13, q=0, and a13(l), 

a, ^(12) , a-, .,(13) the only non-zero coefficients. 

(  • < iJ 
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6.   An example of quantile spectral analysis 

To illustrate the quantile approach to spectral estimation, 

let us consider New York City monthly average temperatures 

1946-1959 (such a series might be collected jointly with New 

York City monthly births 1947-1960 to investigate if there is 

a relationship between atmospheric temperature and birth rate). 

One suspects a seasonal period of 12 (equal to w = .08333). 

Original data signatures:  Mean 54.6, median 55.1 

Standard deviation of the informative quantile function is .2648 

with log -1.33; this diagnostic measure is -1 for Gaussian time 

series.  The values IQ(0.01) = -.48 and IQ(0.99) = .42 provide 

decisive evidence that the distribution is not Gaussian, but is 

short tail [which in the case of time series represents a 

harbinger of a sine wave plus noise model]. 

Sample Spectral Density f:  Median .06, variance 50 are 

strong evidence that the time series is long memory.  Quantile 

density q(u) of f(d)) has maximum value 30892; extreme values of 

quantile Q(u) of f are 25 and 79 [such large values indicate the 

presence of a very narrow band signal].  The graph of D(u) 

confirms this conclusion. 

Correlations.  Mean square .26 is strong evidence that 

time series is long memory with sine wave components. 

AR order determination.  As usual, the same best and second 

best AR orders are reported by AIC and CAT.  The orders are 9 

and 7, with a£ equal to .097 and .099 respectively. 

Delta (index of regular variation) at a>=0, 0.08333: 

Autoregressive and kernel spectral density estimators both 

Ml "~n 
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indicate  5=0 at  CJ=0 and  6=2 at  co=0.08333. 

Comparison of Yule~Walker and Burg estimators of 

autoregressive coefficients and partial correlations.  If the 

estimators are significantly different, we would conclude that 

the time series is long memory and an ARMA model is not 

applicable. 

Autoregressive coefficients 

Index    Yule-Walker     Burg 

-.388 

-.093 

.023 

.117 

.222 

.129 

.170 

.144 

-.255 

1 -.553 
2 .020 

3 .044 

4 .162 

5 .179 
6 .095 

7 .120 

8 .135 
9 -.162 

Partial Correlations 

Yule-Walker 

.818 

-.634 

-.497 

-.454 

-.332 

-.192 

-.153 

-.047 

.162 

.825 

-.661 

-.576 

-.491 

-.399 

-.221 

-.175 

-.048 

.255 

Our current experience leads us to believe that the above 

estimators are just barely "significantly different."  However 

the spectral densities seem to yield similar results. 

Comparison of spectral estimators.  The Burg AR spectral 

estimator is strongly peaked with peak at u)=0.0833 (period 12). 

The spectral distribution rises form 0.03 to 0.96 over the 

interval (.076, .090) corresponding to periods (13.09, 11.08). 

The sample spectral distribution rises from .05 to .92, while the 

Yule-Walker autoregressive spectral distribution rises from .06 

to .93. 

- •- •• •--••-   - -•- 
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ARMA Subset Regression Based on Estimating MA(°°) .  Our 

algorithm yields the canonical models ARMA(1,2;12) and 

AR(1,12,13).  That an ARMA model should not be fit to the time 

series of NYC monthly temperatures is indicated by the lack of 

fit of the ARMA spectral distributions to the sample spectral 

distribution, since the former rise from .16 to .85 for 

cepstral-based MA(°°) , and from .15 to .81 for Burg-based MA(»), 

over the frequency interval (0.076, 0.090).  We have not 

investigated whether the ARMA models identified would fit 

better if their parameters were estimated more efficiently than 

they are by our subset regression algorithm. 

Conclusion.  A model for Y(t) which has maximum insight 

is: Y(t) = S(t) + Z(t), where S(t) is a function with period 

12 [initially estimated by the monthly means], and Z(t) is a 

stationary time series.  The spectrum of interest here would 

seem to be that of Z(t).  However if one insists on a spectral 

density estimator for Y(t) - Y,  a satisfactory answer may be 

the autoregressive spectral density estimator of order 9 with 

coefficients computed by a Burg (or least squares) algorithm 

rather than by the Yule-Walker equations.  Since AR order 

determining criteria do not apply for this model, the question 

is open if one should not base the AR spectral estimator on 

an AR(13). 

!•*- 
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7.   Summary of quantile spectral analysis 

Given a sample Y(t), t=l,2,...,T, quantile spectral analysis 

first forms the standardized time series (Y(t) - median} * {twice 

interquartile range} for which one computes the sample spectral 

density (periodogram), sample correlations, sample partial 

correlations, sample cepstral pseudo-correlations (and even 

sample inverse-correlations).  The output we propose that one 

examine to identify time series memory and spectral density 

estimator is as follows: 

(I) IQ(u) and D(u) plots of the original data (to identify 

its probability distribution), sample spectral density, and 

sample correlations. 

(II) order determining criterion functions AIC and CAT; 

Yule-Walker estimators of autoregressive coefficients for best 

and second best AR orders; Burg estimators of autoregressive 

coefficients for the maximum of the best and second best AR 

orders. 

(III) Diverse Spectral density (and corresponding Spectral 

distribution function) estimators computed by the following 

methods:  (a) sample spectral density, (b) AR spectral density 

of best order with Yule-Walker computed coefficients; (c) AR 

spectral density with least squares (Burg algorithm) coefficients 

(d) ARMA Spectral density estimators with coefficients determined 

by subset regression, based on an MA(«>) representation computed from 

an approximating AR scheme, (e) ARMA spectral density estimators 

L._ 
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with coefficients determined by subset regression, based on an 

MA(°°) representation formed from sample cepstral pseudo- 

correlations.  Each of these methods also yields estimators of a2. 

(IV) Each estimated spectral density is used to compute 

estimators 6, of the index 6 of regular variation of f(u>) at 

w=0 and a specified seasonal frequency [a formula for & is given below]. 

(V) An estimated spectral density is formed called the 

local quantile spectral estimator; it is based on the median 

and quartiles of the set of values of the sample spectral 

density in a specified neighborhood of an equi-spaced grid of 

frequencies. 

The approach to time series model identification outlined 

in this paper can be considered exploratory data analysis since 

the diverse criterion functions utilized require no theory for 

interpretation if one is willing to base one's conclusions on 

the empirically observed values of the criteria for 

representative time series.  On the other hand, the criteria 

are based on clearly stated concepts of probability theory, 

and one could study theoretically the distribution of the 

criteria for various time series models.  The ultimate validity 

of this approach (and refinements of its reasoning process) 

can only be accomplished by a series of examples of important 

practical applications. 

Among the important questions for further research is more 

theory concerning the index 6 of regular variation of a 

- - - -    --- ^^BWMMIt«."i»iii»—--     - in in • • 
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spectral density f(u>) at a frequency ü>Q, defined by the 

representation 

- & 
f(ui) =  (ID-WO)   L((u-u)0) 

where L(x) is slowly varying as x tends to 0.  No and short 

memory time series have 6=0 at all frequencies.  Long memory 

time series have 6^0 at some frequency.  To estimate 6 from a 

M  k consistent (windowed or AR) estimator f(rr) of the spectral 
< 

density at a grid of equi-spaced frequencies, we choose m so 

that m/n • OJ and form a sequence 

k 
r 1        V        T r/J+Hk i c /k+l+nu 6k = ft jlj lo8 f(V> " loS f(~n— >   • 

One conjectures that if n and k are integers tending to » in 

such a way that k/n tends to 0, then 6 = lim 6, 

A value of 6=2 indicates a sharp peak in the spectral density, 

that differencing once may be justified, or that a periodic signal 

should be fitted.  A value of &=-.2  indicates a sharp trough 

in the spectral density which may be the result of over- 

differencing.  The convergence of 6, to 6 is very slow, and we 

currently use t-tie shape of the curve 6, rather than any of its 

individual values as the evidence for interpretation. 

I    L 



-r  
— 

33 

REFERENCES 

Parzen, Emanuel  (1979)  "Nonparametric Statistical Data 
Modeling" Journal of the American Statistical 
Association"] (with discussion) , 74, 105-131. 

Parzen, Emanuel  (1981)  "Time Series Model Identification 
and Prediction Variance Horizon," Proceedings of 
Second Tulsa Symposium on Applied Time Series 
Analysis.  Academic Press: New York, p~! 415-447. 

Priestley, M. B.  (1981)  Spectral Analysis and Time Series, 
Academic Press: London. 

Schuster, A.  (1898)  On the investigation of hidden 
periodicities with applications to a supposed 26-day 
period of meteorological phenomena" Terr. Magn. 3, 
13-41. 

Wiener, N.   (1930)  Generalized harmonic analysis.  Acta 
Math, 5, 117-258. 

  ..... 
- - *— tiir • 



DATE 
FILMED 


